Effect of the Pu α - β - γ Phase Transitions on Storage Can Integrity

Dane R. Spearing, NMT-11
D. Kirk Veirs, NMT-11
F. Coyne Prenger, ESA-EPE
Harry Flanders, SRS

Goals

- Experimentally measure the strain on a 3013-type storage can accompanying the expansion of Pu as it is heated through the α - β and β - γ phase transition temperatures.
- Model these effects using finite element analysis (SRS).
- Support changes to DOE Std 3013 for storage of Pu metal based on technically defensible data.

Problems

- Self-heating in insulated or non-cooled conditions could result in $T > 200^{\circ}C$ (above the $\alpha-\beta$ and $\beta-\gamma$ transition temperatures).
- Unconstrained linear expansion of Pu:

$$\alpha$$
- β Pu: Δ L = 3.5% β - γ Pu: Δ L = 1.1%

- Growth of Pu metal after cycling through the α - β phase transition.
- Constrained expansion behavior of Pu has not been well established.

Pu Expansion Behavior

Pu Expansion Behavior

α - β Experimental Setup

- Annealed 316-SS cylinder (6" long x 4.3" ID x 0.06" thick)
 designed and fabricated to simulate the physical properties of a
 BNFL inner storage container.
- Cylindrical geometry used to facilitate FEA modeling of results.
- 3.6 kg Pu ingot:
 - Diameter 0.004" < ID of can (near zero-tolerance fit)
 - 0.75" thick
 - $\rho = 19.57 \text{ g/cc} (\rho_{\text{max}} = 19.87 \text{ g/cc})$
- 6 hoop, 2 far-field, 2 longitudinal strain gauges, 4 thermocouples
- Quartz rod dilatometry (0.001" resolution)
- Resistively heated in tube furnace in Ar-atmosphere.

Experimental Setup

Strain/Temp vs Time (1st Cycle)

Strain vs Temp (1st Cycle)

Strain vs Time

Ave. Strain vs Cycle

Strain/Thickness vs Temp (1st Cycle)

α – β Results

First Cycle:

Plastic: 1.6% (1.1% ave)

Elastic: 0.2% (0.3% ave)

Total Strain: 1.8% (1.4% ave)

After 6 cycles, no additional plastic strain:

Total Plastic Strain: 2.02% (1.47% ave)

0.071" increase in can diameter at waist (1.6%)

• Ingot Dimensions:

Before: 0.751" thick, 4.358" diameter (Vol = 11.20 cu in)

After: 0.803" thick, 4.338" diameter (Vol = 11.87 cu in)

7% thickness increase, 0.45% diameter decrease, 6% volume increase

Constraining Pressures

- Yield Strengths:
 - α -Pu: 60,000 psi
 - β-Pu: 20,000 psi
- Calculated Constraining Pressures:
 - Based on yield strength of cylinder: 1100 psi
 - Based on measure strain: 1300 psi
- ⇒ Deformation of Pu ingot is likely due to preferential grain alignment during transformation.

α – β Conclusions

- Additional plastic strain decreases with each cycle
- No additional plastic strain after 6 cycles
- Total Plastic Strain (6 cycles) = 1.47%
- ~1200 psi constraining pressure on Pu ingot
- Non-isotropic expansion of Pu ingot likely due to preferential grain alignment during transformation

β–γ Experimental Setup

- Same type can as used for α – β experiment
- 3.47 kg Pu ingot:
 - Diameter 0.012" < ID of can
 - 0.73" thick
 - $\rho = 19.62 \text{ g/cc} (\rho_{\text{max}} = 19.87 \text{ g/cc})$
- 6 hoop, 1 far-field, 2 longitudinal strain gauges, 6 thermocouples
- thickness measured after each cycle
- resistively heated in tube furnace in Ar-atmosphere

Strain/Temp vs Time (1st Cycle)

Strain vs Time

Ave Strain vs Cycle

Ingot Thickness vs Cycle

Ave Strain vs Cycle

Plastic Strain vs Pressure

Conclusions

- Max effective strain 4.2%; thermal cycling produces no additional plastic strain
- FEA analysis by SRS shows BNFL container compliant with ASME code
- No max. temp. requirement needed in storage standard to accommodate volume expansion from phase transitions.

